A generalized likelihood ratio test to identify differentially expressed genes from microarray data

نویسندگان

  • Song Wang
  • Stewart Ethier
چکیده

MOTIVATION Microarray technology emerges as a powerful tool in life science. One major application of microarray technology is to identify differentially expressed genes under various conditions. Currently, the statistical methods to analyze microarray data are generally unsatisfactory, mainly due to the lack of understanding of the distribution and error structure of microarray data. RESULTS We develop a generalized likelihood ratio (GLR) test based on the two-component model proposed by Rocke and Durbin to identify differentially expressed genes from microarray data. Simulation studies show that the GLR test is more powerful than commonly used methods, like the fold-change method and the two-sample t-test. When applied to microarray data, the GLR test identifies more differentially expressed genes than the t-test, has a lower false discovery rate and shows more consistency over independently repeated experiments. AVAILABILITY The approach is implemented in software called GLR, which is freely available for downloading at http://www.cc.utah.edu/~jw27c60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data

Although two-color fluorescent DNA microarrays are now standard equipment in many molecular biology laboratories, methods for identifying differentially expressed genes in microarray data are still evolving. Here, we report a refined test for differentially expressed genes which does not rely on gene expression ratios but directly compares a series of repeated measurements of the two dye intens...

متن کامل

Comparison of Statistical Data Models for Identifying Differentially Expressed Genes Using a Generalized Likelihood Ratio Test

Currently, statistical techniques for analysis of microarray-generated data sets have deficiencies due to limited understanding of errors inherent in the data. A generalized likelihood ratio (GLR) test based on an error model has been recently proposed to identify differentially expressed genes from microarray experiments. However, the use of different error structures under the GLR test has no...

متن کامل

Profound Transcriptomic Differences Found between Sperm Samples from Sperm Donors vs. Patients Undergoing Assisted Reproduction Techniques Tends to Disappear after Swim-up Sperm Preparation Technique

Background Although spermatozoa delivers its RNA to oocytes at fertilization, its biological role is not well characterized. Our purpose was to identify the genes differentially and exclusively expressed in sperm samples both before and after the swim-up process in control donors and infertile males with the purpose to identify their functional significance in male fertility. MaterialsAndMethod...

متن کامل

Statistical methods for identifying differentially Expressed genes in microarray data

Microarray is a recently developed functional genomic technology that has powerful applications in a wide array of biological research areas, including the medical sciences, agriculture, biotechnology and environmental studies. One of the important problems in the analysis of microarray data is the identification of differentially expressed genes. Commonly used approaches for identifying differ...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2004